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The LHC is doing a wonderful job in testing the TeV-scale physics

After the full LHC program we will gain a lot of information

• fair determination of single Higgs observables (∼ 10%)

• test of naturalness up to O(few%)

... but we already know that many key features

of new-physics scenarios can hardly be tested at the LHC

�
�

�



â Which is the situation in composite Higgs models?
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Introduction: the composite Higgs scenario

In composite Higgs models the Higgs arises as a bound state of a
new strongly-coupled sector

The composite dynamics gives rise to
additional states at the TeV scale:

• Fermionic top partners

• Spin-1 resonances
(KK-gluons and EW resonances)

ρ, ψ

composite sector

h



Introduction: the composite Higgs scenario

Need mass gap between the Higgs and the
other composite states

â natural if the Higgs is a Goldstone

ρ, ψ

composite sector

h

Key features:

• Modification of the SM Higgs couplings

• Non-linear dynamics à new non-renormalizable interactions



Introduction

Indirect bounds and lack of enough luminosity limit some
important searches at the LHC:

• EW precision data strongly favor small deviations in the linear
Higgs couplings (< 10%)

• EW precision data push the mass of vector resonances to
the multi-TeV range

• tests of the non-linear Higgs dynamics usually rely on rare
processes with small cross sections

â What kind of new experiments do we need to extend our reach
on composite models?
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Introduction

In this talk I will discuss how much a future 100 TeV hadronic
collider could improve our reach on the parameter space of
composite Higgs scenarios:

I testing the Higgs compositeness

I searching for top partners

I searching for vector resonances



Testing Higgs compositeness



Higgs compositeness

The Goldstone boson nature of the Higgs implies a well defined
pattern of deformations of the Higgs couplings
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v size of the corrections controlled by the compositeness scale f

• The couplings to the gauge fields only depend on the Goldstone
structure (eg. SO(5)→ SO(4))

MCHM4, MCHM5 κv =
√
1− ξ ξ = v2/f2

• The couplings to the fermions have more model dependence

MCHM4 kf =
√
1− ξ

MCHM5 kf =
1− 2ξ√
1− ξ

ξ = v2/f2



Single Higgs couplings

Measuring κv gives a model-independent bound on ξ

The current data give a bound ξ . 0.2
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â The ultimate LHC reach is ξ ∼ 0.1

â Limited improvement possible at an hadronic machine!



Higgs couplings at a 100 TeV machine

Other measurements can however benefit from high energy and
high luminosity:

• Higgs coupling to the top quark

• non-linear Higgs interactions

Possible relevant channels:

â WW scattering and WW → hh

â Double Higgs production in gluon fusion
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Double Higgs production in gluon fusion

The relevant Higgs couplings can be parametrized as
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â can be used to extract the Higgs trilinear coupling c3
[Baur, Plehn, Rainwater; Grober, Muhlleitner;

Contino, Ghezzi, Moretti, G. P., Piccinini, Wulzer;

Dolan, Englert, Spannowsky; Goertz, Papaefstathiou, Yang, Zurita; ...]

â is sensitive to non-renormalizable Higgs interactions
(tthh is a distinctive sign of a composite Higgs)

[Grober, Muhlleitner; Contino, Ghezzi, Moretti, G. P., Piccinini, Wulzer]



Double Higgs production in gluon fusion

The cross section can be significantly
modified even for small deviations

of the Higgs couplings

â strong dependence on c and c2

â milder dependence on c3

c2=D

c3=1+D

c=1+D
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At the LHC the measurement is severely limited by statistics:

σ(gg → hh→ γγbb)SM ' 5 ab @ 14 TeV

à 200 ab @ 100 TeV

â huge improvement at 100 TeV!

Can test Higgs trilinear
and Higgs compositeness for ξ ∼ 0.02

 

 14 TeV   300 fb
-1 

 14 TeV   3000 fb
-1 

100 TeV  3000 fb
-1 

[Azatov, Contino, G. P., Son]
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Searches for top partners



Top partners and naturalness

Top partners control the generation of the Higgs potential and the
stability of the Higgs mass

δm2
h

∣∣
1−loop ∼ +

h h
NP

top

top

h h ∼ −
y2top
8π2

M2
X . TeV

A bound on the partners mass
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Natural Composite Higgs:

light top partners
⇔ Natural SUSY:

light stops
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Top partners at the LHC

Top partners can be easily produced through:

• QCD interactions (pair prod. – universal)

• couplings with heavy quarks (single prod. – model dependent)
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[Matsedonskyi et al. ’14]

â LHC can probe partner masses up to MX ∼ 2 TeV

â testing naturalness up to O(4%)



Top partners at 100 TeV

At 100 TeV the production cross section allows to explore a huge
range of masses
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â model-independent reach MX ∼ 7 TeV

â by using single production MX ∼ 12 TeV

â testing naturalness up to O(0.1%)



Implications on explicit models

In a large class of models (eg. MCHM4,5,10) the mass of the
lightest partner is tightly connected to the compositeness scale

[Matsedonskyi, G. P., Wulzer; Marzocca, Serone, Shu; Pomarol, Riva]
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in preparation]



Searches for vector resonances



Vector resonances

Vector resonances are unavoidably present in composite Higgs
models

The composite dymanics is charged under an extension of the SM
gauge groups

â QCD vector resonances (“KK gluons”)

â EW vector resonances
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EW vector resonances

EW vector resonances are mixed with the SM gauge bosons and
generate corrections to the EW observables

∆Ŝ '
m2
W

m2
ρ

The EW precision data put strong (indirect) bounds

mρ & 2 TeV

I Much stronger bound if no tuning in T̂ : mρ & 5 TeV



EW vector resonances

I most of the parameter space
accessible at the LHC is
already disfavored by the
EW data

I an 100 TeV collider can
easily probe regions with
tiny Higgs compositeness
(ξ . 0.002)

 
  

[Thamm, Torre, Wulzer]
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Conclusions

Thanks to the large increase in energy and cross sections a future
100 TeV hadronic collider can hugely improve the searches for
composite Higgs scenarios

â Significantly extend LHC searches

• reach top partners with MX ∼ 10 TeV

• test naturalness up to O(0.1%)

â Probe observables and dynamics not testable at the LHC

• non-linear Higgs couplings

• EW vector resonances
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